

I. E. P. EL NIÑO INVESTIGADOR – K'USKIQ ERQE Dr. DAVID JUAN FERRIZ OLVIVARES

DE LAS ELIC - ESCUELAS LIBRES DE INVESTIGACIÓN CIENTÍFICA PARA NIÑOS

GRADO	SECUNDARIA – 4to.				
ÁREA	CIENCIA Y TECNOLOGIA				
COMPETENCIA	Indaga mediante métodos científicos para construir conocimientos				
CAPACIDAD	Problematiza situaciones para hacer indagación				
DESEMPEÑO	Indaga a partir de preguntas y plantea hipótesis con base en conocimientos científicos y observaciones previas.				

FÍSICA FICHA Nº 005 Análisis Dimensional

DEFINICIÓN

Siguiendo con el estudio del análisis dimensional, en este capítulo veremos cómo calcular las ecuaciones dimensionales de algunas ecuaciones físicas, aplicando para ello nuevas propiedades y principios.

PROPIEDADES DE LAS ECUACIONES DIMENSIONALES PARTE II

- La ecuación dimensional de todo ángulo, razón trigonométrica y, en general, de toda cantidad adimensional es uno.
 - [sen(53°)]=1
 - $\lceil \log(x) \rceil = 1$
 - [64°]=1
- 2. La ecuación dimensional del exponente de toda magnitud física es igual a uno.
 - $(fuerza)^{\frac{2V}{p}H} = 2N$ se cumple

$$\left[\frac{2V}{P}H\right] = 1$$

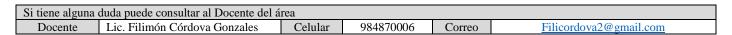
• $9^{\frac{FV}{3x}} = 3$ se cumple

$$\left[\frac{\text{FV}}{3\text{x}}\right] = 1$$

PRINCIPIO DE HOMOGENEIDAD DIMENSIONAL (PHD)

En toda ecuación dimensionalmente correcta, los términos que se suman o se restan deben tener la misma ecuación dimensional.

Por ejemplo, si la siguiente ecuación es dimensionalmente correcta:


$$A + B = C$$

Entonces se debe cumplir que

$$[A] = [B] = [C]$$

Ejemplo:

Sabiendo que la siguiente expresión es dimensionalmente correcta: $H = a^F - b^P$

I. E. P.

EL NIÑO INVESTIGADOR – K'USKIQ ERQE Dr. DAVID JUAN FERRIZ OLVIVARES

DE LAS ELIC - ESCUELAS LIBRES DE INVESTIGACIÓN CIENTÍFICA PARA NIÑOS

GRADO	SECUNDARIA – 4to.				
ÁREA	CIENCIA Y TECNOLOGIA				
COMPETENCIA	Indaga mediante métodos científicos para construir conocimientos				
CAPACIDAD	Problematiza situaciones para hacer indagación				
DESEMPEÑO	Indaga a partir de preguntas y plantea hipótesis con base en conocimientos científicos y observaciones previas.				

Donde F: fuerza y P: presión. Indica la ecuación dimensional de a. Del problema se cumple

$$[H] = [aF - bP]$$

Por el principio de homogeneidad

$$[H] = [aF] = [bP]$$

$$[H]=[a][F]=[b][P]$$

$$[a]MLT^{-2}\!=\![b]ML^{-1}T^{-2}$$

$$\frac{[a]}{[b]} = \frac{ML^{-1}T^{-2}}{MLT^{-2}}$$

$$\therefore \frac{\left[a\right]}{\left[b\right]} \!=\! L^{\!-2}$$

"Aprendiendo en Clases"

NIVEL BAJO

1. Si A representa el área, ¿cuál es la ecuación dimensional de x?

$$A \log(30) = \left[56.x^{1/2} \right]$$

Solución:

$$[A][\log(30)] = [56] \left[x^{\frac{1}{2}} \right]$$

$$L^2.1 = 1.[x]^{\frac{1}{2}}$$

$$\left[\mathbf{x}\right]^{\frac{1}{2}} = \mathbf{L}^2$$

$$\therefore \! [x] \! = \! L^4$$

2. Si P representa la presión, ¿cuál es la ecuación dimensional de Y?

$$5 - Y^2 = 36^{\circ} \frac{\log(452)}{P}$$

- a) $M^{-1/2}L^{1/2}T$ b) $ML^{1/2}$ d) $M^{-1}T^{1/2}$ e) $T^{1/2}$

- 3. Determina la ecuación dimensional de C si la siguiente ecuación es correcta:

$$mS = 6V \tan(3C/F)$$

m: masa; S: tiempo; V: volumen y F: fuerza.

- a) ML
- b) LT⁻²
- c) MLT⁻²

- d) LT
- e) MLT⁻¹

4. Determina la ecuación dimensional de A/B, si se sabe que v: velocidad y t: tiempo y además la siguiente ecuación es dimensionalmente correcta:

$$A = ve^{Bt^2}$$

- a) L⁻¹ d) L
- b) LT⁻¹ e) LT
- c) L2T

c) 3

Siendo m: masa y v: rapidez. Determina x.y si la energía cinética viene dada por la siguiente ecuación:

$$E_k = \frac{1}{2}m^x \cdot v^y$$

- a) 1
- e) 5
- d) 4 Solución:

Aplicando las dimensiones en cada término

$$\begin{bmatrix} \mathbf{E}_{\mathbf{k}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \end{bmatrix} \begin{bmatrix} \mathbf{m}^{\mathbf{x}} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{\mathbf{y}} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{E}_{\mathbf{k}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \end{bmatrix} \begin{bmatrix} \mathbf{m}^{\mathbf{x}} \end{bmatrix} \mathbf{v}^{\mathbf{y}}$$

$$[E_k] = \left[\frac{1}{2}\right] [m]^x [v]^y$$

$$ML^2T^{-2} = 1.M^x(LT^{-1})^y$$

$$ML^2T^{-2} = M^xL^yT^{-y}$$

Igualando magnitudes

- $M = M^x$
- $\rightarrow x = 1$
- $L^2 = L^y$
- $\rightarrow y = 2$
- ∴ x.y = 2

Si tiene alguna duda puede consultar al Docente del área								
Docente	Lic. Filimón Córdova Gonzales	Celular	984870006	Correo	Filicordova2@gmail.com			