

GRADO	SECUNDARIA – 4to.				
ÁREA	CIENCIA Y TECNOLOGIA				
COMPETENCIA	Indaga mediante métodos científicos para construir conocimientos				
CAPACIDAD	Problematiza situaciones para hacer indagación				
DESEMPEÑO	Construye su conocimiento acerca del funcionamiento y estructura del mundo natural y artificial que lo rodea.				

FICHA N° 002

FÍSICA

Análisis Dimensional

DEFINICIÓN

La medición en la física es fundamental, para ello es necesario establecer un conjunto de unidades convencionales para cada magnitud física, esto permite diferenciar una magnitud de otra.

Magnitud: Todo aquello que puede ser medido.

Medir: Consiste en comparar dos cantidades de una misma magnitud; donde una de ellas es la unidad patrón.

CLASIFICACIÓN DE LAS MAGNITUDES

POR SU ORIGEN

- Magnitudes fundamentales
- Magnitudes derivadas

Magnitudes fundamentales:

Son aquellas magnitudes que convencionalmente, servirán como base para deducir las demás magnitudes físicas. Según el Sistema Internacional SI son:

	MAGNITUD FÍSICA	UNIDAD	SÍMBOLO
	Longitud	metro	m
	Tiempo	segundo	s
	Masa	kilogramo	kg
	Temperatura	kelvin	K
п	Intensidad de corriente	ampere	A
	Cantidad de sustancia	mol	mol
П	Intensidad uminosa	Candela	

Magnitudes derivadas:

Son aquellas magnitudes que se expresan en función de las magnitudes fundamentales.

Entre las magnitudes derivadas tenemos la aceleración, fuerza, potencia, energía, carga eléctrica, etc.

POR SU NATURALEZA

- Magnitudes escalares
- · Magnitudes vectoriales

Magnitudes escalares:

Es aquella magnitud que queda definida solamente por un valor numérico y su unidad de medida. Ejemplo: Temperatura → 300 K

Magnitudes vectoriales:

Es aquella magnitud que, además del valor numérico y una unidad, depende de una dirección. Ejemplo:

Velocidad → 30 m/s hacia dirección el norte

Ecuación dimensional

Expresión matemática que nos permite establecer una magnitud física en función de las magnitudes fundamentales.

Notación:

Si B es una magnitud física su ecuación dimensional (E.D) es [B].

Según el SI las ecuaciones dimensionales son:

Para las magnitudes fundamentales

MAGNITUD	E.D.
Longitud	L
Tiempo	T
Masa	M
Temperatura	θ
Intensidad de corriente	I
Cantidad de sustancia	N

Si tiene alguna	duda puede consultar al Docente del á	rea			
Docente	Lic. Filimón Córdova Gonzales	Celular	984870006	Correo	Filicordova2@gmail.com

I. E. P.

EL NIÑO INVESTIGADOR – K'USKIQ ERQE Or. DAVID JUAN FERRIZ OLVIVARES

DE LAS ELIC - ESCUELAS LIBRES DE INVESTIGACIÓN CIENTÍFICA PARA NIÑOS

GRADO	SECUNDARIA – 4to.				
ÁREA	CIENCIA Y TECNOLOGIA				
COMPETENCIA	Indaga mediante métodos científicos para construir conocimientos				
CAPACIDAD	Problematiza situaciones para hacer indagación				
DESEMPEÑO	Construye su conocimiento acerca del funcionamiento y estructura del mundo natural y artificial que lo rodea.				

Para algunas magnitudes derivadas

MAGNITUD	E.D.
Área	L^2
Volumen	L^3
Velocidad	LT^{-1}
Aceleración	LT ⁻²
Fuerza	MLT ⁻²
Trabajo	ML^2T^{-2}
Energía	ML^2T^{-2}
Potencia	ML^2T^{-3}
Presión	$ML^{-1}T^{-2}$
Calor	ML^2T^{-2}
Frecuencia	T-1

Algunas propiedades de las E.D. que se usarán específicamente en este capítulo son:

- 1) [Número real] = 1
- 2) [xy] = [x][y]

3)	x	x
	y	 y

- $4) \quad [cX] = c[X]$
 - (c: número real)
- 5) $[X^n] = [X]^n$

(n: número real)

- 6) [razón trigonométrica] = 1
- Las constantes numéricas son adimensionales mas no así las constantes físicas.
 - $[\pi] = 1$
 - · Ley de la gravitación universal

$$F = G \frac{m_1 m_2}{d^2}$$

G: constante (física) de gravitación universal.

$$G = 6.67^{\circ} 10^{-11} \frac{Nm^2}{kg^2}$$

Luego:

$$\, \, : \! [G] \! = \! M^{-1} L^3 T^{-2}$$

"Aprendiendo en Clases"

NIVEL BAJO

 Determina la ecuación dimensional de la fuerza (F) si su valor se calcula mediante la siguiente fórmula:

- a) MLT⁻¹
- b) MLT-2
- c) ML
- d) MT⁻²
- e) LT⁻²

Solución:

Desarrollando las ecuaciones dimensionales.

- [F] = [masa][aceleración]
- $[F] = (M)(LT^{-2})$
- $\therefore [F] = MLT^{-2}$
- Determina la ecuación dimensional de la presión P si se calcula mediante la siguiente fórmula:

$$P = \frac{fuerza}{\acute{a}rea}$$

- a) ML^{-1}
- b) ML⁻¹T⁻³
- c) M⁻¹LT⁻²
- d) ML⁻¹LT⁻²
- e) ML

3. Determina la ecuación dimensional de la fuerza centrípeta (F_{cp}) si su valor se puede calcular aplicando la siguiente fórmula:

$$F_{cp} = \frac{(masa)(velocidad)^2}{radio}$$

- a) MLT⁻²
- b) MT-2
- c) ML⁻²
- d) ML⁻¹T⁻²
- e) MLT2
- Determina la ecuación dimensional de la energía cinética (E_k) si viene dada por la siguiente ecuación:

$$E_k = \frac{(masa)(velocidad)^2}{2}$$

- a) MLT-1
- b) T⁻¹
- c) ML2T-1
- d) ML
- e) ML²T⁻²

Si tiene alguna duda puede consultar al Docente del área					
Docente	Lic. Filimón Córdova Gonzales	Celular	984870006	Correo	Filicordova2@gmail.com